

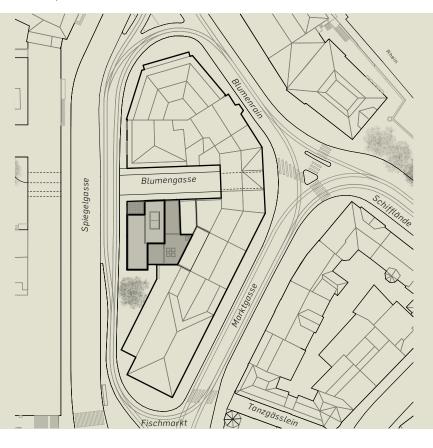
Städtebau & Architektur



AMT FÜR UMWELT UND ENERGIE NEUBAU

Spiegelgasse 15, 4051 Basel

Mit dem Neubau für das Amt für Umwelt und Energie ist an innerstädtischer Lage ein modernes, energetisch optimiertes und nachhaltiges Gebäude entstanden, das sich mit seiner schimmernden Photovoltaikfassade optimal in den denkmalgeschützten Kontext der Basler Altstadt einfügt. Der achtgeschossige Neubau kann seinen Strombedarf dank der Photovoltaikfassade und dem optimierten Gebäudekonzept selber decken. Zudem ist es das erste Bürogebäude in Basel, das mit dem Label Minergie-A-ECO zertifiziert wurde. Entsprechend hat das Gebäude Vorbildcharakter für ökologisches Bauen im Immobilienportfolio des Kantons Basel-Stadt.



AUSGANGSLAGE

Das Amt für Umwelt und Energie (AUE) ist die Vollzugsbehörde für energetische Bauvorgaben und Anlaufstelle für Umweltschutzfragen im Kanton Basel-Stadt. Vor dem Umzug in den Neubau an der Schifflände war das AUE an der Hochbergerstrasse 158 untergebracht. Das 1968 erstellte Gebäude entsprach nicht mehr den aktuellen energetischen Standards, und es bestand ein grösserer Instandhaltungsrückstau. Im Zusammenhang mit dem 2008 verabschiedeten Regierungsratsbeschluss zur Raumstrategie und Umsetzungsplanung für die Verwaltungsstandorte erwarb der Kanton die Liegenschaften Spiegelgasse 11 und 15 mit der Idee zur Konzentration der Verwaltungsstandorte. Durch den Standortwechsel des AUE konnte hinsichtlich einer nachhaltigen Bauweise (Ökologie, Ökonomie, Gesellschaft) ein vorbildlicher Ersatzneubau anstelle der Häuser Spiegelgasse 11 und 15 errichtet werden.

AUFGABE UND PROJEKTZIELE

Der Neubau des AUE sollte hinsichtlich Nachhaltigkeit durch seinen Planungsprozess, seine Bauweise, seinen Energieverbrauch, seine Qualität der Büroarbeitsplätze und seine städtebaulich prominente Lage Vorbildwirkung erzielen und dadurch ein Leuchtturmprojekt für andere kantonale Projekte sowie für private Bauherren sein. Für kantonale Neubauten ist gemäss Energiegesetz generell Minergie-P oder ein vergleichbarer Standard vorzusehen. Eine Machbarkeitsstudie konnte nachweisen, dass trotz der Einschränkungen aufgrund der innerstädtischen Lage die Zertifizierung mit einer guten Gebäudehülle und einem sinnvollen Gebäudetechnikkonzept an diesem Standort möglich ist. Im Sinne eines Vorzeigeprojektes sollten aber weitergehende Massnahmen (Photovoltaikanlage, hocheffiziente Geräte und Beleuchtung, Minimierung graue Energie, ökologisches Materialkonzept etc.) angestrebt werden. 2013 wurde ein anonymer Projektwettbewerb mit besonderem Augenmerk auf die Zielsetzungen der Nachhaltigkeit ausgeschrieben. Er sollte ausloten, welche über den Minergie-P-Standard hinausgehenden Massnahmen an diesem Standort umsetzbar und sinnvoll sein würden. Aus dem Wettbewerb ging das Projekt von jessenvollenweider architektur siegreich hervor.

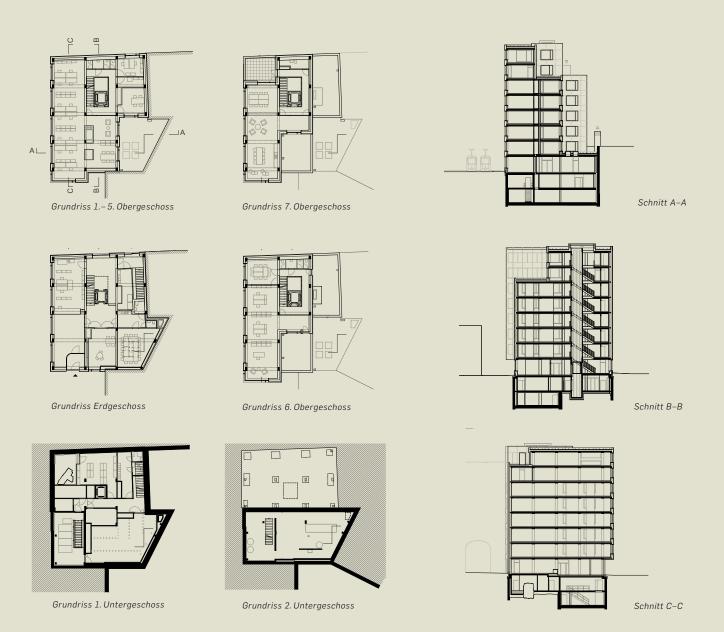
PROJEKT

Der achtgeschossige Neubau ist das erste mit dem Label Minergie-A-ECO zertifizierte Bürogebäude in Basel. Dank seiner Photovoltaikfassade und dem optimierten Gebäudekonzept deckt das Gebäude seinen jährlichen Strombedarf selbst. Geheizt wird mit Wärme aus dem Basler Fernwärmenetz.

Der Neubau ist ein Hybridbau aus Holz und Beton, der regionales Buchen- und Fichtenholz mit Recyclingbeton kombiniert. Er steht auf der alten, massiven Bodenplatte der beiden an dieser Stelle abgerissenen Gebäude. Die darauf aufbauende Stützenstruktur mit grossen Stützen und Trägern aus Stabschichtholz ermöglicht eine offene Raumstruktur und prägt grösstenteils das Erscheinungsbild der Innenräume. Ausgesteift wird die Stützenstruktur mit Stahlkreuzen in den Wänden und vorfabrizierten Betonelementen in den Decken, die sich mit Holzelementen abwechseln. Die Fläche darüber ist mit Beton ausgegossen. Die hybride Holzbauweise im Verbund mit Recyclingbeton in den Deckenelementen sowie die Verwendung von überwiegend regionalen Materialien führen zu einer wesentlichen Reduktion der grauen Energie des Gebäudes. Die Holz-Beton-Konstruktion hat eine gute Wärmespeicherkapazität, was einerseits im Winter den Heizbedarf reduziert, anderseits im Sommer die nächtliche Kühlung unterstützt und sich damit positiv auf Energieverbrauch und Raumklima auswirkt.

Der hybride Rohbau erzeugt wesentlich das Raumgefühl im Innern, denn in diesem Projekt entspricht der Rohbau auch dem Ausbau. Das Holz bleibt in den Innenräumen sichtbar und die helle Farbe prägt sämtliche Räume, vom Kundencenter im Parterre bis zur Cafeteria im obersten Geschoss. Die gegossenen Betonböden wurden lediglich geschliffen und versiegelt, die Wände teilweise mit Lehm verputzt. In Streifen verlegte Filzmatten aus recyceltem PET dämpfen in den Büros die internen Lärmemissionen.

Die grossen Fensteröffnungen ergeben trotz der Verschattung durch die umliegenden Gebäude an allen 74 Arbeitsplätzen eine gute Tageslichtsituation. Der witterungsgeschützte Sonnenschutz im Zwischenraum der Kastenfenster verhindert eine Überhitzung der Räume im Sommer. Das Treppenhaus im Zentrum des Gebäudes ist über alle Stockwerke offen und ermöglicht im Sommer eine natürliche Nachtauskühlung mittels Kamineffekt. Die kühle Luft strömt nachts über die Lüftungsflügel in die Büroräume, kühlt dabei den Betonboden und wird im zentralen Treppenhaus über Dach abgeführt. Im Winter wird der Betonboden mit-



Cafeteria, 7. Obergeschoss

Bürogeschosse, 1.- 6. Obergeschoss

tels Wärme aus dem Fernwärmenetz aktiviert. So kann ganzjährig ein angenehmes Raumklima gewährleistet werden. Eine mechanische Belüftung sorgt für gute Raumluftqualität trotz verkehrsreicher Lage und ermöglicht die Wärmerückgewinnung aus der Abluft. Die Regenwassernutzungsanlage für die Toilettenspülung senkt den Trinkwasserverbrauch und bildet eine Ersatzmassnahme für die an diesem Standort nicht realisierbare Versickerungsanlage.

Ein achtgeschossiger Holzbau mit Büronutzung in der Innenstadt ist in der Schweiz aussergewöhnlich. Dieser Innovationsaspekt wird durch die allseitige Photovoltaikfassade unterstützt. Die Integration von Photovoltaik in die Gebäudefassade eröffnet für viele Gebäude mit geringer Dachfläche oder anderen Dachflächennutzungen die Möglichkeit zur eigenen Stromerzeugung. Die vertikale Ausrichtung der Zellen bietet den Vorteil der geringeren Verschmutzung und einen saisonalen sowie tageszeitlich gleichmässigeren Stromertrag, was mit Blick auf die Auslastung des Stromnetzes interessant ist. Gleichzeitig erforderte

die Lage des Gebäudes in der Schonzone eine architektonisch hochwertige Ausgestaltung dieser Fassade. Daher wurden die Photovoltaikmodule eigens für den Neubau entwickelt und an das innerstädtische Stadtbild angepasst. Sie geben dem Gebäude sein einzigartiges Gesicht und sind somit ein zentrales architektonisches Gestaltungselement. Dank unregelmässig eingestreuten farbigen Punkten aus Titannitrid und einer strukturierten Oberfläche aus gehärtetem Schmelzglas verändert sich je nach Blickwinkel und Sonneneinstrahlung das Lichtspiel in den Modulen und lässt die dunklen Module mal grün, mal leuchtend golden oder orange aussehen. Dank dem schimmernden Effekt fügt sich die Fassade trotz ihrer Andersartigkeit optimal in die denkmalgeschützte steinerne Umgebung ein. Das Gebäude beweist, dass die Kombination Nachhaltigkeit und Anforderung an hohe architektonische Qualität möglich ist.

KENNZAHLEN

AMT FÜR UMWELT UND ENERGIE

NEUBAU

Spiegelgasse 15, 4051 Basel

nwohnergemeinde der Stadt Basel
nmobilien Basel-Stadt
ther Righetti, Marlis Lübcke (bis
21), Städtebau & Architektur
nis Cotti, Gebäudetechnik, Städtebau &
chitektur; Roger Jaggi, Gebäude-
tomation, Städtebau & Architektur
nt für Umwelt und Energie
sel-Stadt

PROJEKTORGANISATI	ON
Gesamtleitung	jessenvollenweider architektur, Basel

Architektur	jessenvollenweider architektur, Basel
Baumanagement	b+p baurealisation, Basel
Bauingenieur	SJB Kempter Fitze AG, Frauenfeld
Elektroplanung	Pro Engineering AG, Basel
HLK-Planung	Waldhauser + Hermann AG, München-
	stein
MSR-Planung	Waldhauser + Hermann AG, München-
	stein
Sanitärplanung	Gemperle Kussmann GmbH, Basel
Bauphysik	Zimmermann und Leuthe GmbH,
	Aetigkofen
Fassadenplanung	gkp Fassadentechnik AG, Aadorf
Lichtplanung	Hellraum GmbH, St. Gallen
Brandschutzplanung	SJB Kempter Fitze AG, Frauenfeld

2013 (1. Preis)
uar 2016
ust 2019
ober 2021

RAUMPROGRAMM	GESAMTFLÄCHE m²
2. UG: Haustechnik	166
1. UG: Haustechnik, Velokeller, Garderobe und archäologische Informationsstelle	d Dusche, 317
EG: Empfang, Beratungs- und Sitzungszimme	er 317
1.–6. OG: Grossraumbüro, je ein Archiv, Druck und Sitzungszimmer	kerraum 1'566
7.0G: Cafeteria	196
TOTAL	2'562

TOTAL		2'562
ODINDMENOTA (10 (0000)		
GRUNDMENGEN SIA 416 (2003)		
Grundstücksfläche GSF	m^2	335
Geschossfläche total GF	m^2	2'541
– Geschossfläche beheizt EBF	m^2	2'100
Aussenwandfläche total AWF	m^2	1'641
– Aussenwandfläche geschlossen		
zu Aussenluft AWO	m^2	1'206
– Fenster und übrige Verglasungen FEN	m^2	435
Dachfläche total DAF	m^2	330
– Dachfläche gegen Aussenluft DAFO	m^2	330
Anzahl Aufzüge/Transportanlagen AT		1
Hauptnutzfläche HNF	m^2	1'267
Gebäudevolumen GV	m^3	8'038

ER	STELLUNGSKOSTEN BKP 1-9	inkl. MWST	17'549'000
1	Vorbereitung, Provisorien	CHF	1'360'000
2	Gebäude	CHF	15'638'000
4	Umgebung	CHF	52'000
5	Baunebenkosten	CHF	499'000
J	Daurieberkosteri	GH	433 00
-	v		

GEI	BÄUDEKOSTEN BKP 2	inkl. MWST	15'638'000
21	Rohbau 1	CHF	5'510'000
22	Rohbau 2	CHF	287'000
23	Elektroanlagen	CHF	1'183'000
24	HLKK+MSR-Anlagen	CHF	2'262'000
25	Sanitäranlagen	CHF	320'000
26	Transportanlagen	CHF	407'000
27	Ausbau 1	CHF	1'211'000
28	Ausbau 2	CHF	1'017'000
29	Honorare	CHF	3'441'000
Kosten provisorisch vor Schlussrechnung			

KOSTENKENNWERTE SIA 416	inkl. MWST	
Erstellungskosten BKP 1–9		
Kosten/Gebäudevolumen GV	CHF/m³	2'183
Kosten/Geschossfläche GF	CHF/m ²	6'850
Kosten/Hauptnutzfläche HNF	CHF/m ²	13'851
Gebäudekosten BKP 2		
Kosten/Gebäudevolumen GV	CHF/m³	1'946
Kosten/Geschossfläche GF	CHF/m ²	6'104
Kosten/Hauptnutzfläche HNF	CHF/m ²	12'343

ENERGIEKENNWERTE SIA 380/1			
Energiebezugsfläche $A_{\scriptscriptstyle E}$	m^2	2'100	
Thermische Gebäudehüllfläche A_{TH}	m^2	2'354	
Gebäudehüllzahl A _{TH} /A _E		1.12	
Heizwärmebedarf Q _H	MJ/m^2	77	
Warmwasserbedarf Q _{ww}	MJ/m^2	10	
Wärmebedarf effektiv Q _{Heff}	MJ/m^2	47	
Zertifikate		Minergie A-ECO	

KOSTENSTAND		
Baupreisindex BINW-H	Oktober 2021	103.9
Rasis Oktober 2015 = 100		

gedruckt in der schweiz

Städtebau & Architektur:
Michelle Bachmann
in Zusammenarbeit mit:
Städtebau & Architektur – Hochbau

Bau- und Verkehrsdepartement Basel-Stadt, Städtebau & Architektur, Münsterplatz 11, 4001 Basel Tel. 061 267 92 25

www.staedtebau-architektur.bs.ch